Liquid Stream InDeformable Porous Materials

Authors

  • K U Reddy St. Martin’s Engineering College, Dhulapally (V), Kompally, Secunderabad, Telangana, India-500100 Author

DOI:

https://doi.org/10.61841/73mpjc09

Keywords:

Viscous flow; Porous layer; MHD; Porous layer thickness

Abstract

In this paper, the stream in a deformable permeable channel limited by a restricted deformable porous layer with moving rigid two equivalent plates inside a seeing alluring field is investigated. The coupled directing conditions are handled; the enunciations for the speed field and solid dislodging are obtained. The effects of the permeable layer thickness and the postponement of stream speed and expulsion are inspected graphically. It is seen that speed reduces with extending in the drag, while the opposite is direct in the deformable 

Downloads

Download data is not yet available.

References

1. Biot, M. A., General theory of three-dimensional consolidation, J. Appl. Phys., 12(2)

(1941) 155-164.

2. Maroudas, A., Physicochemical properties of cartelige in the light of ion exachnage

theory, Biophy. J., 8, 575-594, 1968.

3. O. Iliev, A.Mikelic, P.Popov., On upscaling certain flows in deformable porous media,

Multiscale Model. Simul., 7(1), 2008, 93-123.

4. Muri, H., The chemistry of the ground substance of joint cartilage, The joints and

Synoval Fluid, II, ed., L. Sokoloff, Academic press, New York, 1980, 27-94.

5. Mow, V. C., Lai, W.M., Holmes, M. H., Advance theoretical and experimental

techniques in cartilage Research, Biomechanics.

6. Edwards, J., Physical characteristics of artecular cartilage, Inst. Mech. Engrs., Proc.

181:16-24, 1967.

7. Linn, F. C., and L. Sokoloff ., Movement and composition of interstitial fluid of

cartilage, Arthritis Rhrumat., 8:481-494,1964.

8. Mow VC, Holmes MH, Lai M. Fluid transport and mechanical properties of articular

cartilage: a review, J. Biomechanics., 1984; 17: 377-394.

9. Oomens C.W.J, Van Campen D.H, and Grootenboer H.J., A mixture approach to the

mechanics of skin, J. Biomech., 20, 877-885 (1987)

10. Yang M. and Taber L.A, The possible role of poroelasticity in the apparent viscoelastic

behavior of passive cardiac muscle, J. Biomech., 24, 587-597 (1991)

11. Huyghe J.M, Van Campen D. H, Arts T., and Heethaar R.M. A two-phase finite element

model of the diastolic left ventricle, J. Biomech.,. 24, 527-538 (1991)

12. Kenyon D.E, A mathematical model of water flux through aortic tissue, Bull. Math.

Biol., 41, 79-90 (1979)

13. Jayaraman G, Water transport in the arterial wall: a theoretical study, J. Biomech., 16,

833-840, (1983)

14. Klanchar M and Tarbell J. M, Modelling water flow through arterial tissue, Bull.

Math. Biol., 49, 651-749 (1987)

15. Barry S I, Parker K H, Aldis G K. Fluid flow over a thin deformable porous layer, J.

Appl. Math. Phy., 1991; 42: 693-578.

16. Ranganatha, T. R., Siddagamma, N. G., Flow of Newtonian fluid a channel with

deformable porous walls, Proc. of National Conference on Advances in fluid

mechanics, 2004, 41-77.

17. Sreenadh S, Krishnamurthy M, Sudhakara E, Gopi Krishna. G., Couete flow over a

deformable permeable bed, Int. J. Innovative Res. Sci. & Eng., 2014 2547-3607.

18. Sreenadh, S., Vaidya, H.M., Sudhakara, E., Gopi Krishna, G., Krishnamurthy, M.

MHD Couette flow of a Jeffery fluid over a deformable porous layer, Int. J.

Appl.Comput. Math, 2016. DOI:10.1007/s40829-016-0222-1.

Downloads

Published

30.06.2021

How to Cite

Liquid Stream InDeformable Porous Materials. (2021). International Journal of Psychosocial Rehabilitation, 25(3), 734-748. https://doi.org/10.61841/73mpjc09