MACHINE LEARNING BASED LOGANALYSIS FOR AUTOMATED ANOMALY DETECTION

Authors

  • Narinder Gupta Guru Kashi University, Talwandi Sabo Author

DOI:

https://doi.org/10.61841/e9gbyb69

Keywords:

machine learning, based log-analysis, automated, anomaly detection

Abstract

Many sensors are used in a single production process, making it difficult to pinpoint the exact source of a problem. More than one process cycle is required to make a semiconductor wafer. There are many cycles in this process, and it is difficult to spot abnormalities in time; thus, the process continues until it is complete. The cost of producing these wafers is high, and a process failure can have a significant impact on both time and money. As a result, anomaly detection in semiconductor production can benefit greatly from machine learning. A manufacturing facility may interrupt the operation and fix the problematic equipment if irregularities in the production process could be discovered or predicted sooner. As a result, semiconductor producers would see an improvement in process yield and a reduction in expenses.

Downloads

Download data is not yet available.

References

Astekin, M., Özcan, S., & Sözer, H. (2019, December). Incremental analysis of large-scale

system logs for anomaly detection. In 2019 IEEE International Conference on Big

Data (Big Data) (pp. 2119-2127). IEEE.

https://ieeexplore.ieee.org/abstract/document/9006593/?casa_token=hxpw6mTJT3

wAAAAA:ECu2SCHL2tEKSVVouhjmG9wvqOGc1RwecRT5iJlieiLXzN8SxEQR

IE__93o76-feOKZvbvPXwJk- [Accessed on 30-11-2021]

Bao, L., Li, Q., Lu, P., Lu, J., Ruan, T., & Zhang, K. (2018). Execution anomaly detection

in large-scale systems through console log analysis. Journal of Systems and

Software, 143, 172-186.

https://www.sciencedirect.com/science/article/pii/S0164121218301031?casa_token

=b3VD5kVjYFAAAAAA:Cua2Ru72vJh13GDLrxedhJxWEaqfxjgYKI4Q3Z3YjX

QTIhMlMcTZ5SZIw7zJvLvffChmE3WwarCt [Accessed on 30-11-2021]

Bhanage, D. A., Pawar, A. V., & Kotecha, K. (2021). IT Infrastructure Anomaly Detection

and Failure Handling: A Systematic Literature Review Focusing on Datasets, Log

Preprocessing, Machine & Deep Learning Approaches and Automated Tool. IEEE

Access. https://ieeexplore.ieee.org/abstract/document/9615039/ [Accessed on 30-11-

2021]

Cao, Q., Qiao, Y., & Lyu, Z. (2017, December). Machine learning to detect anomalies in

web log analysis. In 2017 3rd IEEE International Conference on Computer and

Communications (ICCC) (pp. 519-523). IEEE.

https://ieeexplore.ieee.org/abstract/document/8322600/?casa_token=8B_etk_kK6g

AAAAA:mqJylYHUudSJcUUqux8-

wnKTkRf_YaJl7Db4iIrJR9yXhYcUO1YXEQftBTnx5xKvpbvSYhVVKn8F

[Accessed on 30-11-2021]

Chen, Z., Liu, J., Gu, W., Su, Y., & Lyu, M. R. (2021). Experience Report: Deep Learningbased System Log Analysis for Anomaly Detection. arXiv preprint

arXiv:2107.05908. https://arxiv.org/abs/2107.05908 [Accessed on 30-11-2021]

Debnath, B., Solaimani, M., Gulzar, M. A. G., Arora, N., Lumezanu, C., Xu, J., ... & Khan,

L. (2018, July). LogLens: A real-time log analysis system. In 2018 IEEE 38th

international conference on distributed computing systems (ICDCS) (pp. 1052-

1062). IEEE.

https://ieeexplore.ieee.org/abstract/document/8416368/?casa_token=IGIQ0ao1T4c

AAAAA:bhijQZWWOino9I5C_DOI6ZU0qPejpVKxVeuqkyd_hEk6ApUZgnZX1R-Eet54dl189pdZ4zAPEl9 [Accessed on 30-11-2021]

Du, Q., Zhao, L., Xu, J., Han, Y., & Zhang, S. (2021, September). Log-Based Anomaly

Detection with Multi-Head Scaled Dot-Product Attention Mechanism.

In International Conference on Database and Expert Systems Applications (pp. 335-

347). Springer, Cham. https://link.springer.com/chapter/10.1007/978-3-030-86472-

9_31 [Accessed on 30-11-2021]

Fredriksson Franzén, M., & Tyrén, N. (2021). Anomaly detection for automated security log

analysis: Comparison of existing techniques and tools. https://www.divaportal.org/smash/record.jsf?pid=diva2:1576656 [Accessed on 30-11-2021]

Hirakawa, R., Uchida, H., Nakano, A., Tominaga, K., & Nakatoh, Y. (2021). Anomaly

detection on software log based on Temporal Memory. Computers & Electrical

Engineering, 95, 107433.

https://www.sciencedirect.com/science/article/pii/S0045790621003943?casa_token

=cfjgtm_Ev2MAAAAA:o63T4sPJTD8IhCbcLa3fQmtuMuRMAndlcJeyrENIZJ3Q

7R-eqSR-DbznKs2n-wUVq8g5aloZUdre [Accessed on 30-11-2021]

Hirakawa, R., Uchida, H., Nakano, A., Tominaga, K., & Nakatoh, Y. (2021). Large Scale

Log Anomaly Detection via Spatial Pooling1. Cognitive Robotics.

https://www.sciencedirect.com/science/article/pii/S2667241321000173 [Accessed

on 30-11-2021]

Hong, J., Park, S., Yoo, J. H., & Hong, J. W. K. (2020, November). Machine Learning based

SLA-Aware VNF Anomaly Detection for Virtual Network Management. In 2020

16th International Conference on Network and Service Management (CNSM) (pp. 1-I

7). IEEE.

https://ieeexplore.ieee.org/abstract/document/9269100/?casa_token=wytAnMa6Ips

AAAAA:iW4nmieLE8C1VaVkrZ9fom3Qr6YBgnDDrC5nhr2RGdxr2hvtEYIBGe

Y_nMCvP9uHqvgJi9P4ObhC [Accessed on 30-11-2021]

Schmidt, T., Hauer, F., & Pretschner, A. (2020, September). Automated Anomaly Detection

in CPS Log Files. In International Conference on Computer Safety, Reliability, and

Security (pp. 179-194). Springer, Cham.

https://link.springer.com/chapter/10.1007/978-3-030-54549-9_12 [Accessed on 30-

11-2021]

Shao, W., Wang, Z., Wang, X., Qiu, K., Jia, C., & Jiang, C. (2020). LSC: Online auto-update

smart contracts for fortifying blockchain-based log systems. Information

Sciences, 512, 506-517.

https://www.sciencedirect.com/science/article/pii/S0020025519309260?casa_token

=Zu98Df62yIkAAAAA:ZDpMsndd1Z8g0e3t1S0vB9ZJFYLIcwYESOq2GzjoZdV

CtF6iyH5bRhZKdgcUIGglw68ZdjG9Jj8r [Accessed on 30-11-2021]

Shin, D., Khan, Z. A., Bianculli, D., & Briand, L. (2021, October). A Theoretical Framework

for Understanding the Relationship Between Log Parsing and Anomaly Detection.

In International Conference on Runtime Verification (pp. 277-287). Springer, Cham.

https://link.springer.com/chapter/10.1007/978-3-030-88494-9_16 [Accessed on 30-

11-2021]

Skopik, F., Wurzenberger, M., & Landauer, M. (2021). Smart Log Data Analytics:

Techniques for Advanced Security Analysis. Skopik, F., Wurzenberger, M., &

Landauer, M. (2021). Smart Log Data Analytics: Techniques for Advanced Security

Analysis. [Accessed on 30-11-2021]

Tallón-Ballesteros, A. J., & Chen, C. (2020). Explainable AI: Using shapley value to explain

complex anomaly detection ML-based systems. Machine Learning and Artificial

Intelligence: Proceedings of MLIS 2020, 332, 152.

https://books.google.com/books?hl=en&lr=&id=hq4SEAAAQBAJ&oi=fnd&pg=P

A152&dq=MACHINE+LEARNING+BASED+LOGANALYSIS+FOR+AUTOMATED+ANOMALY+DETECTION&ots=2bZzHPW7

k-&sig=4IodPdO_0eiKyt_DEFC7Zm8diYM [Accessed on 30-11-2021]

Wang, Z., Tian, J., Fang, H., Chen, L., & Qin, J. (2021). LightLog: A lightweight temporal

convolutional network for log anomaly detection on the edge. Computer Networks,

108616.

https://www.sciencedirect.com/science/article/pii/S1389128621005119?casa_token

=heZpk7kfOZsAAAAA:-7ix1Wgc3Ww8JrXNhj6wGccuDeldgKXZYu8u1tH7oFfMUTjRGnRmfNtRaU-h3udOhCC5i8Zxtg3 [Accessed on 30-11-

2021]

Yadav, R. B., Kumar, P. S., & Dhavale, S. V. (2020, June). A Survey on Log Anomaly

Detection using Deep Learning. In 2020 8th International Conference on Reliability,

Infocom Technologies and Optimization (Trends and Future

Directions)(ICRITO) (pp. 1215-1220). IEEE.

https://ieeexplore.ieee.org/abstract/document/9197818/ [Accessed on 30-11-2021]

Yang, L., Chen, J., Wang, Z., Wang, W., Jiang, J., Dong, X., & Zhang, W. (2021, May).

Semi-supervised log-based anomaly detection via probabilistic label estimation.

In 2021 IEEE/ACM 43rd International Conference on Software Engineering

(ICSE) (pp. 1448-1460). IEEE.

https://ieeexplore.ieee.org/abstract/document/9401970/?casa_token=2OuRv9Pn0o

YAAAAA:cAaQy0F9zpyyakMO8EmgRE7DtuQOKkqWOrYlorc_sgMhPYBlcNapgXFCSAaaCG_vJapp4rQJCci [Accessed on 30-11-2021]

Downloads

Published

30.06.2021

How to Cite

MACHINE LEARNING BASED LOGANALYSIS FOR AUTOMATED ANOMALY DETECTION. (2021). International Journal of Psychosocial Rehabilitation, 25(3), 1251-`1259. https://doi.org/10.61841/e9gbyb69